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Abstract 

We explore the topic of Goppa codes and how they are used in the McEliece 

Cryptosystem. We first cover basic terminology that is needed to understand the rest of the 

paper. Then we explore the definition and limitations of a Goppa code along with how such 

codes can be used in a general cryptosystem. Then we go in depth on the McEliece 

Cryptosystem in particular and explain how the security of this method works. 
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Executive Summary 

 Efficient and secure methods of communication have been in use since before the 

peak of the Roman Empire. A cryptosystem is a method of secure data transmission such 

that no one other than the intended receiver can read the original message. The problems 

that are usually faced with these methods vary, but include potential interception during 

transmission, errors, and whether or not a method is even practical to use. Errors can be 

detected and corrected by error-correcting codes such as Goppa codes, which are the 

original codes used in the McEliece cryptosystem. This paper explains Goppa codes and 

how they are used in the original McEliece cryptosystem, and investigates the security of 

the cryptosystem.  

 Sometimes a sent message and the received message are not the same. This is 

mainly due to the occurrence of errors. Errors can be caused by random noise over a 

channel, nearby channels, or outside interference among other things. Error-correcting 

code are used to detect or correct errors in a message. This is done by adding redundancy, 

that is, extra information that makes the message easier to understand if an error were to 

occur, in the message. For example, the message “I am going to bring my gloves” is sent, but 

somehow an error occurred and the received message is “I am going to bring my 

hairbrush.” The receiver may not understand that the message has an error in it and also 

has no idea what the original message was supposed to be. Now suppose the message had 

been given some added redundancy so that it read, “Because it is snowing heavily outside, I 

am going to bring my gloves.” Because of this added redundancy, the receiver could 
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correctly deduce that there was an error in the received message and that the sender had 

meant to say he or she was going to bring some sort of warm clothing to ward off the cold. 

 However, errors are not always added by accident. Errors can also be purposefully 

added to a message in order to further encrypt it. Then, by using an error-correcting 

algorithm, these errors can then be reversed. Adding an error vector further scrambles a 

message and as a result, can make the cryptosystem even more secure. 

A Goppa code is a type of error-correcting code and is based on modular arithmetic, 

which is when a series of numbers increases towards a certain number and upon reaching 

said number, starts back over at 0 again. A real-life example of modular arithmetic is using 

a 24-hour clock versus a 12-hour clock to tell time. A 24-hour clock represents the hour in 

modulo 24 whereas the 12-hour clock represents the hour in modulo 12. For example, 3:00 

A.M. is the same in a 12-hour clock and a 24-hour clock. However, 15:00 P.M. in a 24-hour 

clock is actually 3:00 P.M. in a 12-hour clock because the clock “wraps back around” so that 

any hour above 12, in this case 15, is reduced so that 15 − 12 =3. 

 The most basic cryptosystem consists of an algorithm for a key, an encryption 

method, and a decryption method. Suppose two friends, Alice and Bob, wish to securely 

communicate with each other, but know that a third party named Eve could potentially 

eavesdrop on them. Let us assume Alice wishes to send a message to Bob. Alice then uses a 

key to encrypt her message, known as plaintext, before sending it to Bob. Once Bob 

receives the encrypted plaintext, known as ciphertext, he can use the key to decrypt and 

discover the original message. We always assume Eve knows the general method that is 

being used, but not the key that is used. Eve usually has one of the following intentions: 
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read the message, uncover the key and use it to read all messages encrypted by said key, 

alter Alice’s message, and/or pretend to be Alice and exchange messages with Bob.  

 The McEliece cryptosystem is a Public Key Cryptosystem, which means that it uses a 

public key and a private key in order to encrypt and decrypt a message. In our example, 

Bob publishes his public key so that anyone can read it. Alice uses Bob’s public key in order 

to encrypt a message and send it to Bob. Bob then uses his private key in order to decrypt 

the message. However this is only useful if Eve cannot decode a message just by knowing a 

public key. Instead, Eve would need to know the private key, which is only known to the 

receiver of the ciphertext, which Bob is in this case. 

 Specifically, in the McEliece Cryptosystem, Bob would construct his public key by 

selecting a Goppa polynomial 𝑔𝑔(𝑧𝑧) of degree 𝑡𝑡 and compute the generator matrix 𝐺𝐺 of the 

Goppa code. Bob would then choose a random invertible matrix 𝑆𝑆 and a random 

permutation matrix 𝑃𝑃 and use them to compute 𝐺𝐺′ = 𝑆𝑆𝐺𝐺𝑃𝑃. Bob would then publish his 

public key that consists of (𝐺𝐺′, 𝑡𝑡). His private key, which he would not publish, would 

consist of (𝑆𝑆,𝐺𝐺,𝑃𝑃). 

 Alice would first write her message and represent it in binary strings of bits and 

then she would encrypt every string. Then she would choose a random error vector with 

weight of 𝑡𝑡 or less, add it to the encryption, and then send the final encryption so that the 

sent code vector 𝑦𝑦 = 𝑚𝑚𝐺𝐺′ + 𝑒𝑒. 

 Bob would then use his matrix 𝑃𝑃 to compute 𝑦𝑦′ = 𝑦𝑦𝑃𝑃−1. Then, Bob would use the 

decoding algorithm for his Goppa code 𝐺𝐺 to error correct 𝑦𝑦′ into the codeword 𝑚𝑚′ = 𝑚𝑚𝑆𝑆 by 
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finding 𝑒𝑒′. And because he already knows 𝑆𝑆−1, he can calculate the original message 𝑚𝑚 =

𝑚𝑚′𝑆𝑆−1.  

 Eve would have a difficult time trying to decrypt Alice’s message without the private 

key. This is because she would need to separate matrix 𝐺𝐺 from matrix 𝐺𝐺′. And because the 

matrix 𝐺𝐺′ is not invertible, Eve would need to know the inverse of the chosen random 

matrix 𝑆𝑆, which was not published. Eve also does not know what the matrix 𝑃𝑃 is and so 

cannot find 𝑦𝑦’ in order to find 𝑚𝑚′. Basically, in order to keep this cryptosystem secure, it 

needs to be very laborious to decode 𝑦𝑦′ and find 𝑚𝑚′. In order to do this, the Goppa code is 

selected to be as large as possible. For example, in the original McEliece cryptosystem 

published in 1978, McEliece suggested the use of a [1024, 524] Goppa code, i.e. a Goppa 

code of length 1024 and dimension 524. This Goppa code can correct for up to 50 errors. 

However, this is a major issue because the larger the code is, the less practical it is to use 

the cryptosystem. But as technology advances and memory capacity increases, this 

cryptosystem is likely to become more useful. 

 Another disadvantage of this system is that using the same encryption matrix 𝐺𝐺′ to 

send the same message several times will make the system more vulnerable to attack. Also, 

there is no explicit way to use this cryptosystem for signatures, such as in the Rivest-

Shamir-Adleman cryptosystem (RSA). This means that unless there was a password that 

was previously determined by the two friends, Bob has no idea whether or not Alice sent 

the message because anyone can use his public key to send him a message. 
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 On the other hand, the advantages of this system are that the system is one of the 

more simple cryptosystems available and it has been widely studied since its introduction 

in 1978. Also, using this system allows for high encryption and decryption speeds. 
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Part I: Basic Terminology  

1.1 Cryptology 

Cryptology is the age-old study of how to send and receive messages without any 

outside sources interfering, reading, or altering the message in some way.  

Let us consider two friends Alice and Bob. They wish to securely communicate with 

each other, but know a third party named Eve could potentially eavesdrop on them. Let us 

say Alice wants to send a message to Bob. Using a method, or cryptosystem, that was 

previously agreed upon between the two friends, Alice encrypts her message, also called 

the plaintext, into a series of codewords, which is referred to as the ciphertext. Usually, we 

assume Eve knows which cipher or cryptosystem is used and so the only thing keeping the 

message secure is the specific key or keys that are used in the encoding and decoding 

processes. Once Bob receives the codewords, he uses the key to decrypt the codewords 

back into Alice’s original message. Eve usually has one of the following goals: read the 

message, discover the key and so read all messages encrypted with said key, alter Alice’s 

message in such a way that Bob still thinks the message is from Alice, pretend to be Alice 

and exchange messages with Bob even though Bob believes he is talking to Eve and not 

Alice. 

Depending on the cryptosystem, the method used to encode a message is not 

necessarily the same as the method used to decode a message. One example of this is the 

group of cryptosystems commonly called the Public Key Cryptosystems. These 
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cryptosystems are based on a public key and a private key. Bob publishes his public key so 

that anyone, Alice and Eve included, can read it. Alice then uses the public key in order to 

encode the message and sends it to Bob, who then uses his private key to decode the 

message. The method used, however, is such that Eve cannot decode the message just by 

knowing the public key. The private key is what is needed in order to decode a message, 

and as the receiver of the ciphertext, Bob is the only one who knows the private key. 

 

1.2 Error Correcting Codes 

Bob has received a message from Alice; however, the message does not make any 

sense. What happened? Well, either this was a crude attempt at misdirection from Eve or 

something happened during the transmission of the message that altered it. Errors can 

come from random noise over a channel, nearby channels, the fading of a channel, physical 

defects, or outside interference among other things. 

Error correcting codes (ECC) are codes that can be used to detect errors in a sent 

message and correct them. This is done by adding redundancy, that is, extra information 

that makes the message easier to understand if an error were to occur, to the message. In 

coding theory, redundancy can also be called parity or parity check. This is called encoding. 

Once a message is encoded, it becomes a codeword that contains both the message and 

redundancy. These codes have specific decoding algorithms that can correct up to a specific 

amount of errors. Once this decoding algorithm is applied, some of the errors that may 

have occurred during the transmission of the message can be corrected, and the original 

message can be recovered. This process is called decoding.  
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 Another way to use error-correcting codes is to purposefully add error to a message 

such that the received ciphertext is 𝑦𝑦 = 𝑐𝑐 + 𝑒𝑒, where 𝑐𝑐 is the codeword and 𝑒𝑒 is an error 

vector with a weight less than or equal to some fixed number 𝑟𝑟. This is helpful because Eve 

would have a hard time retrieving the codeword from the received ciphertext. 

 

1.3 Fields 

A field is a basic building block of mathematics as it allows us to assign certain 

properties to a set of numbers. These properties are necessary as otherwise it would be 

impossible to manipulate numbers the way we do. 

Definition 1.3.1 A 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓 𝐹𝐹 is defined as a set of elements that is closed under two 

operations (+,∙) and satisfies the following properties:  

1. 𝑇𝑇ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒𝑡𝑡𝑒𝑒 𝑎𝑎𝑎𝑎 𝑒𝑒𝑓𝑓𝑒𝑒𝑚𝑚𝑒𝑒𝑎𝑎𝑡𝑡 𝑎𝑎 ∈ 𝐹𝐹 𝑒𝑒𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡,𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑓𝑓𝑓𝑓 𝑒𝑒 ∈ 𝐹𝐹, 𝑒𝑒 + 𝑎𝑎 = 𝑒𝑒. 

2. 𝑇𝑇ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒𝑡𝑡𝑒𝑒 𝑎𝑎𝑎𝑎 𝑒𝑒𝑓𝑓𝑒𝑒𝑚𝑚𝑒𝑒𝑎𝑎𝑡𝑡 𝑏𝑏 ∈ 𝐹𝐹 𝑒𝑒𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡,𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑓𝑓𝑓𝑓 𝑒𝑒 ∈ 𝐹𝐹, 𝑒𝑒𝑏𝑏 = 𝑒𝑒. 

𝐹𝐹𝑓𝑓𝑟𝑟 𝑎𝑎𝑓𝑓𝑓𝑓 𝑒𝑒, 𝑦𝑦, 𝑧𝑧 ∈ 𝑍𝑍, 

3. 𝑒𝑒 + 𝑦𝑦 = 𝑦𝑦 + 𝑒𝑒 

4. 𝑒𝑒𝑦𝑦 = 𝑦𝑦𝑒𝑒 

5. (𝑒𝑒 + 𝑦𝑦) + 𝑧𝑧 = 𝑒𝑒 + (𝑦𝑦 + 𝑧𝑧) 

6. (𝑒𝑒𝑦𝑦)𝑧𝑧 = 𝑒𝑒(𝑦𝑦𝑧𝑧) 

7. 𝑒𝑒(𝑦𝑦 + 𝑧𝑧) = 𝑒𝑒𝑦𝑦 + 𝑒𝑒𝑧𝑧 

8. 𝐹𝐹𝑓𝑓𝑟𝑟 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝑒𝑒, 𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒𝑡𝑡𝑒𝑒 𝑎𝑎𝑎𝑎 𝑒𝑒𝑓𝑓𝑒𝑒𝑚𝑚𝑒𝑒𝑎𝑎𝑡𝑡 − 𝑒𝑒 𝑒𝑒𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑒𝑒 + (−𝑒𝑒) = 𝑎𝑎. 

9. 𝐹𝐹𝑓𝑓𝑟𝑟 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝑒𝑒 ≠ 𝑎𝑎, 𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒𝑡𝑡𝑒𝑒 𝑎𝑎𝑎𝑎 𝑒𝑒𝑓𝑓𝑒𝑒𝑚𝑚𝑒𝑒𝑎𝑎𝑡𝑡 𝑒𝑒−1 𝑒𝑒𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑒𝑒𝑒𝑒−1 = 𝑏𝑏. 

 13 



Example 1.3.1. The integers, written ℤ ≔ {…− 3,−2,−1, 0, 1, 2, 3, … }, are not a field under 

(+,∗). This is because other than the integers 1,−1, and 0, the integers do not have 

elements that satisfy property number 9. 

Example 1.3.2 The set of rational numbers ℚ ≔ �𝑎𝑎
𝑏𝑏

 𝑒𝑒𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑎𝑎, 𝑏𝑏 ∈ ℤ 𝑎𝑎𝑎𝑎𝑓𝑓 𝑏𝑏 ≠ 0� is a field 

closed under (+,∙) and as such, upholds the previous nine rules. 

1. 𝑦𝑦 = 0
𝑧𝑧

 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑎𝑎𝑦𝑦 𝑒𝑒𝑓𝑓𝑒𝑒𝑚𝑚𝑒𝑒𝑎𝑎𝑡𝑡 𝑧𝑧 ≠ 0 𝑒𝑒𝑓𝑓 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 0
𝑧𝑧

+ 𝑒𝑒 = 𝑒𝑒. 

2. 𝑦𝑦 = 1
1

 𝑒𝑒𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 1
1
∙ 𝑒𝑒 = 𝑒𝑒. 

𝐹𝐹𝑓𝑓𝑟𝑟 𝑎𝑎𝑓𝑓𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑓𝑓 ∈ ℤ, 

3. 𝑎𝑎
𝑏𝑏

+ 𝑐𝑐
𝑑𝑑

= 𝑐𝑐
𝑑𝑑

+ 𝑎𝑎
𝑏𝑏

 

4. 𝑎𝑎
𝑏𝑏
∙ 𝑐𝑐
𝑑𝑑

= 𝑐𝑐
𝑑𝑑
∙ 𝑎𝑎
𝑏𝑏

 

5. �𝑎𝑎
𝑏𝑏

+ 𝑐𝑐
𝑑𝑑
� + 𝑒𝑒

𝑓𝑓
= 𝑎𝑎

𝑏𝑏
+ �𝑐𝑐

𝑑𝑑
+ 𝑒𝑒

𝑓𝑓
� 

6. �𝑎𝑎
𝑏𝑏
∙ 𝑐𝑐
𝑑𝑑
� ∙ 𝑒𝑒

𝑓𝑓
= 𝑎𝑎

𝑏𝑏
∙ �𝑐𝑐

𝑑𝑑
∙ 𝑒𝑒
𝑓𝑓
� 

7. 𝑎𝑎
𝑏𝑏
∙ �𝑐𝑐

𝑑𝑑
+ 𝑒𝑒

𝑓𝑓
� = 𝑎𝑎

𝑏𝑏
∙ 𝑐𝑐
𝑑𝑑

+ 𝑎𝑎
𝑏𝑏
∙ 𝑒𝑒
𝑓𝑓

 

8. 𝐹𝐹𝑓𝑓𝑟𝑟 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝑎𝑎
𝑏𝑏
∈ ℚ , 𝑓𝑓𝑎𝑎𝑒𝑒 ℎ𝑎𝑎𝑒𝑒 −𝑎𝑎

𝑏𝑏
+ 𝑎𝑎

𝑏𝑏
= 0. 

9. 𝐹𝐹𝑓𝑓𝑟𝑟 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝑎𝑎
𝑏𝑏
∈ ℚ,𝑤𝑤𝑓𝑓𝑡𝑡ℎ 𝑎𝑎 ≠ 0, 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑓𝑓𝑒𝑒𝑚𝑚𝑒𝑒𝑎𝑎𝑡𝑡 𝑏𝑏

𝑎𝑎
 𝑒𝑒𝑎𝑎𝑡𝑡𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒 𝑎𝑎

𝑏𝑏
∙ �𝑏𝑏

𝑎𝑎
� = 1.  

Definition 1.3.2 A field with a finite number of elements is called a 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑡𝑡𝑒𝑒 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓, or a 

𝐺𝐺𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓. A Galois field is written as 𝐺𝐺𝐹𝐹 (𝑞𝑞) with 𝑞𝑞 being the order of a field.  

Theorem 1.3.1 Let 𝑝𝑝 be prime. For every power 𝑝𝑝𝑚𝑚, there exists a unique finite field with 

the order 𝑝𝑝𝑚𝑚 and these are the only possible finite fields.  
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Proof  

See Artin [A, pages 510-515]. 

Definition 1.3.3 Let 𝑝𝑝 be a prime number, 𝑘𝑘 > 0, and 𝑘𝑘 ∈ ℤ. The Galois field of order 𝑞𝑞 =

𝑝𝑝𝑘𝑘, that is, the amount of elements in the field, is called the extension Galois field of 𝐺𝐺𝐹𝐹(𝑝𝑝) of 

degree 𝑚𝑚 and is written as 𝐺𝐺𝐹𝐹(𝑝𝑝𝑚𝑚). 

Definition 1.3.4 A polynomial over 𝐺𝐺𝐹𝐹(𝑝𝑝𝑚𝑚) is called irreducible if it is not divisible by any 

polynomial over 𝐺𝐺𝐹𝐹(𝑝𝑝𝑚𝑚) with a lesser degree.  

Example 1.3.3 Take 1 + 𝑋𝑋 + 𝑋𝑋3 over 𝐺𝐺𝐹𝐹(2). Any polynomial with a degree less that 3 

would need to contain 𝑋𝑋 and/or 𝑋𝑋2. No such polynomial completely divides 1 + 𝑋𝑋 + 𝑋𝑋3, 

and so 1 + 𝑋𝑋 + 𝑋𝑋3 is an irreducible polynomial over 𝐺𝐺𝐹𝐹(2).  

Example 1.3.4 𝑋𝑋 + 𝑋𝑋5 is not an irreducible polynomial over 𝐺𝐺𝐹𝐹(2) because 

 𝑋𝑋+𝑋𝑋
5

𝑋𝑋
= 1 + 𝑋𝑋4.   

Definition 1.3.5 Suppose we have an irreducible polynomial 𝑓𝑓(𝑒𝑒) with degree 𝑚𝑚 over 

𝐺𝐺𝐹𝐹(𝑝𝑝). Such a polynomial is said to be primitive if 𝑎𝑎 = 𝑝𝑝𝑚𝑚 − 1 is the smallest possible 

integer for which 𝑓𝑓(𝑒𝑒) divides 𝑋𝑋𝑛𝑛 − 1.  

Example 1.3.5 Suppose 𝑓𝑓(𝑒𝑒) = 1 + 𝑋𝑋 + 𝑋𝑋3 with degree 3 over 𝐺𝐺𝐹𝐹(2). 𝑎𝑎 = 23 − 1 = 7 and 

so we have 𝑋𝑋7 − 1.  𝑋𝑋7 − 1 can be factored into irreducible polynomials as (𝑋𝑋 + 1)(1 + 𝑋𝑋 +

𝑋𝑋3)(𝑋𝑋3 + 𝑋𝑋2 + 1). It can be checked that 𝑓𝑓(𝑒𝑒) does not divide 𝑋𝑋𝑣𝑣 such that 𝑣𝑣 < 7. 

Therefore, 1 + 𝑋𝑋 + 𝑋𝑋3 is a primitive polynomial of degree 3 over 𝐺𝐺𝐹𝐹(2).  
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1.4 Modular Arithmetic  

Definition 1.4.1 For a positive integer 𝑎𝑎, integers 𝑎𝑎 and 𝑏𝑏 are said to be 

𝑐𝑐𝑓𝑓𝑎𝑎𝑔𝑔𝑟𝑟𝑠𝑠𝑒𝑒𝑎𝑎𝑡𝑡 𝑚𝑚𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓 𝑎𝑎, written 𝑎𝑎 ≡ 𝑏𝑏 (𝑚𝑚𝑓𝑓𝑓𝑓 𝑎𝑎) if and only if 𝑎𝑎 − 𝑏𝑏 = 𝑘𝑘𝑎𝑎 for some integer 𝑘𝑘. 

Example 1.4.1 Write the number 49 congruent modulo 5. 

5 divides 49-b such that the answer is an integer. According to definition, we need to 

find a k such that 49 − 𝑏𝑏 = 5𝑘𝑘. But simply finding 5𝑘𝑘 is enough. Some multiples would be 

45, 40, and 35, which would lead to 𝑏𝑏 = 4,9, and 14 respectively. 

Ideally, we want a 𝑏𝑏 such that 0 ≤ 𝑏𝑏 < 5. Such a 𝑏𝑏 is called the smallest possible 

non-negative residue. And so the smallest possible non-negative residue is when 𝑏𝑏 = 4. 

And so we would write, 49 ≡ 4 (𝑚𝑚𝑓𝑓𝑓𝑓 5). 

Example 1.4.2 Write 81 ≡ 𝑏𝑏(𝑚𝑚𝑓𝑓𝑓𝑓 2) such that 𝑏𝑏 is the smallest possible non-negative 

residue. 

81 − 𝑏𝑏 = 2𝑘𝑘 

81 − 𝑏𝑏 = 2(40)  

𝑏𝑏 = 1 

Therefore, 81 ≡ 1 (𝑚𝑚𝑓𝑓𝑓𝑓 2).  

Example 1.4.3 𝐺𝐺𝐹𝐹(2) = ℤ2 = {0,1}=the integers modulo 2. This is also known as the 

binary field.  

 

1.5 Binary  

 16 



For many situations involving computers, it has become accepted practice to 

convert information into a string of 1s and 0s. This conversion is referred to as writing 

information in binary. Usually, we think of numbers in base 10. For example, 321 = 3 ∗

102 + 2 ∗ 101 + 1 ∗ 100. However, binary is written in base 2. This means numbers are 

converted by writing the number in additive terms of powers of 2, with the coefficients 

being either 0 or 1.Then, by taking the coefficients and putting them in order, we have a 

binary representation of the number.  For example the number 37 can be written as 1 ∗

25 + 0 ∗ 24 + 0 ∗ 23 + 1 ∗ 22 + 0 ∗ 21 + 1. As a result, 37 can be written as 100101 in 

binary. 

Only the integers 0 and 1 are used in binary form and they have the additive 

properties of elements in modulo 2, that is, 0+1=1+0=1, 0+0=0, and 1+1=0. 

Example 1.5.1 If we were to add 37+37 together in binary, then 

100101+100101=1001010. 

Each 0 or 1 is referred to as a bit. A string of bits is referred to as a byte and is 

defined to have a specific length. Using our previous example, 100101 is a 6-bit number.  

 

1.6 Hamming Distance 

Definition 1.6.1 Let 𝐴𝐴 be an alphabet and let 𝐴𝐴𝑛𝑛: ={all sequences of length 𝑎𝑎 of elements in 

𝐴𝐴}. A code 𝐶𝐶 of length 𝑎𝑎 is a nonempty subset of 𝐴𝐴𝑛𝑛. An element in this subset, written as 

𝑐𝑐 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛), is called a code vector, legal codeword, or just a codeword. An illegal 

codeword is sequence of length 𝑎𝑎 that is in 𝐴𝐴𝑛𝑛, but is not in a code.  
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Throughout this paper, we will assume alphabet 𝐴𝐴 will consist of the binary bits 0 

and 1. In other words, the alphabet is the field ℤ2 = {0,1}=the integers modulo 2. A code 

using this alphabet is referred to as a binary code. 

Example 1.6.1 Suppose we determine that all codewords of length 3 are only legal if they 

are even when added together and illegal if they are odd. Thus, the code vector (1,0,1) = 0 

is legal whereas (0,0,1) = 1 is illegal. 

For error-correcting purposes, we want these codewords to be as far away from 

each other as possible. Otherwise, a simple error could turn one codeword into another.  

This is typically done by spacing out the illegal codewords among the legal codewords. By 

doing this, we further the Hamming distance between two legal codewords.  

Definition 1.6.2 A Hamming distance is the distance between two codewords 𝑐𝑐𝑖𝑖 and 𝑐𝑐𝑗𝑗  in a 

message 𝑚𝑚. This is measured by counting the amount of differing bits in the two 

codewords. 

Example 1.6.1 Suppose 𝑐𝑐𝑖𝑖 = (0,0,0) and 𝑐𝑐𝑗𝑗 = (1, 1, 1). The Hamming distance between 

these two codewords is three. 

Definition 1.6.3 The smallest Hamming distance, denoted 𝑓𝑓(𝐶𝐶), between two legal 

codewords 𝑐𝑐𝑖𝑖 and 𝑐𝑐𝑗𝑗  in the code 𝐶𝐶 is called the minimum Hamming distance of 𝐶𝐶. This 

reflects the error-correcting capability of a code.  

Definition 1.6.4 For a codeword 𝑐𝑐𝑖𝑖, the Hamming weight, denoted 𝑤𝑤𝑡𝑡(𝑐𝑐𝑖𝑖), is the number of 

nonzero places in 𝑐𝑐𝑖𝑖. For a binary codeword, this would be the number of ones in the 

codeword. 

 18 



Example 1.6.2 Let 𝑐𝑐 = (1,0,1). The Hamming weight of this number would therefore be 

two. 

 

1.7 Linear Codes 

Definition 1.7.1 A linear code of dimension 𝑘𝑘 and length 𝑎𝑎 over a field 𝐹𝐹 is a 𝑘𝑘-dimensional 

subspace of the vector space 𝐹𝐹𝑛𝑛, a set of 𝑎𝑎-dimensional vectors and can be referred to as an 

[𝑎𝑎,𝑘𝑘] code. If the minimum Hamming distance of the code is 𝑓𝑓, then the code is called a 

[𝑎𝑎,𝑘𝑘, 𝑓𝑓] code.  

For our use, a linear code is a binary code of length 𝑎𝑎 and dimension 𝑘𝑘, a set of 2𝑘𝑘 

binary 𝑎𝑎-tuples, i.e. the codewords, such that a sum of two codewords is always another 

codeword. 
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Part II: Goppa Codes  

2.1 Definition 

A Goppa code is a linear, error-correcting code that can be used to encrypt and 

decrypt a message. Such a code has the following definition. 

Definition 2.1.1 Let a Goppa polynomial be defined as a polynomial over 𝐺𝐺𝐹𝐹(𝑝𝑝𝑚𝑚), that is, 

𝑔𝑔(𝑒𝑒) = 𝑔𝑔0 + 𝑔𝑔1𝑒𝑒… + 𝑔𝑔𝑡𝑡𝑒𝑒𝑡𝑡 =  �𝑔𝑔𝑖𝑖𝑒𝑒𝑖𝑖
𝑡𝑡

𝑖𝑖=0

, 

with each 𝑔𝑔𝑖𝑖 ∈ 𝐺𝐺𝐹𝐹(𝑝𝑝𝑚𝑚). Let 𝐿𝐿 be a finite subset of the extension field 𝐺𝐺𝐹𝐹(𝑝𝑝𝑚𝑚), 𝑝𝑝 being a 

prime number, say   

𝐿𝐿 =  {𝛼𝛼1, … ,𝛼𝛼𝑛𝑛} ⊆ 𝐺𝐺𝐹𝐹(𝑝𝑝𝑚𝑚)  

such that 𝑔𝑔(𝛼𝛼𝑖𝑖) ≠ 0 for all αi ∈ L. Given a codeword vector 𝑐𝑐 = (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛) over 𝐺𝐺𝐹𝐹(𝑞𝑞), we 

have the function  

𝑅𝑅𝑐𝑐(𝑧𝑧) = ∑ 𝑐𝑐𝑖𝑖
𝑥𝑥−𝛼𝛼𝑖𝑖

𝑛𝑛
𝑖𝑖=1  , 

where 1
𝑥𝑥−𝛼𝛼𝑖𝑖

 is the unique polynomial with (𝑒𝑒 − 𝛼𝛼𝑖𝑖) ∗
1

𝑥𝑥−𝛼𝛼𝑖𝑖
≡ 1 �𝑚𝑚𝑓𝑓𝑓𝑓 𝑔𝑔(𝑒𝑒)� with a degree 

less than or equal to 𝑡𝑡 − 1. Then, a Goppa code Γ�𝐿𝐿,𝑔𝑔(𝑒𝑒)� is made up of all code vectors 

𝑐𝑐 such that  𝑅𝑅𝑐𝑐(𝑒𝑒) ≡ 0 �𝑚𝑚𝑓𝑓𝑓𝑓 𝑔𝑔(𝑒𝑒)�. This means that the polynomial 𝑔𝑔(𝑒𝑒) divides 𝑅𝑅𝑐𝑐(𝑒𝑒).  
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2.2 Parameters 

Recall that Goppa codes are linear codes. As such, we can use the notation [𝑎𝑎, 𝑘𝑘,𝑓𝑓] to 

describe a Goppa code with the parameters of length 𝑎𝑎, dimension 𝑘𝑘, and minimum 

Hamming distance 𝑓𝑓.  The length 𝑎𝑎 depends solely on the subset 𝐿𝐿. 

Theorem 2.2.1 The dimension 𝑘𝑘 of a Goppa code Γ�𝐿𝐿,𝑔𝑔(𝑒𝑒)� of length 𝑎𝑎 is greater than or 

equal to 𝑎𝑎 −𝑚𝑚𝑡𝑡, that is, 𝑘𝑘 ≥ 𝑎𝑎 −𝑚𝑚𝑡𝑡. 

Theorem 2.2.2 The minimum distance 𝑓𝑓 of a Goppa code Γ�𝐿𝐿,𝑔𝑔(𝑒𝑒)� of length 𝑎𝑎 is greater 

than or equal to 𝑡𝑡 + 1, that is 𝑓𝑓 ≥ 𝑡𝑡 + 1. 

Proof 

Please refer to Jochemsz [E] for the proof of the above theorems. 

 

2.3 Binary Goppa Codes 

 A binary Goppa code is when Γ�𝐿𝐿,𝑔𝑔(𝑒𝑒)� uses a polynomial 𝑔𝑔(𝑒𝑒) over 𝐺𝐺𝐹𝐹(2𝑚𝑚) of 

degree 𝑡𝑡. For this paper, we want to particularly emphasize irreducible binary Goppa codes. 

Recall that binary refers to modulo 2. Irreducible means we choose 𝑔𝑔(𝑒𝑒) to be an 

irreducible Goppa polynomial. This is because the generating polynomial of such a code 

allows us to generate an efficiently error-correcting algorithm. Also, we can more 

accurately estimate the lower bound of the Hamming distance. 

Theorem 2.3.1 An irreducible, binary Goppa code Γ�𝐿𝐿,𝑔𝑔(𝑒𝑒)� has a minimum distance 𝑓𝑓 of 

greater than or equal to 2𝑡𝑡 + 1, that is, 𝑓𝑓 ≥ 2𝑡𝑡 + 1. 
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Proof 

Please refer to section 2.2 in Engelbert, Overbeck, and Schmidt [C] for this proof. 

Q.E.D. 

Therefore, the parameters for an irreducible, binary Goppa code would be [𝑎𝑎,≥ 𝑎𝑎 −

𝑚𝑚𝑡𝑡,≥ 2𝑡𝑡 + 1]. 

For the rest of this paper, the reader should assume that by Goppa code, we mean a 

binary, irreducible Goppa code. 

 

2.4 Parity Check Matrix 

The parity check matrix of a Goppa code is used in order to decode a message. 

Definition 2.4.1 A parity check matrix of a Goppa code is defined to be a matrix 𝐻𝐻 such that 

𝐻𝐻𝑐𝑐𝑇𝑇 = 0 for all code vectors 𝑐𝑐 in 𝐺𝐺𝐹𝐹(2𝑚𝑚) that satisfy the Goppa code requirement. 

Proposition 2.4.1 If we set 𝐻𝐻 = 𝑋𝑋𝑋𝑋𝑍𝑍 such that  

𝑋𝑋 = �
𝑔𝑔𝑡𝑡 0 0
𝑔𝑔𝑡𝑡−1 𝑔𝑔𝑡𝑡 0
⋮ ⋮ ⋮

⋯ 0
⋯ 0
⋱ ⋮

𝑔𝑔1 𝑔𝑔2 𝑔𝑔3 ⋯ 𝑔𝑔𝑡𝑡

� ,𝑋𝑋 =  �

1
𝛼𝛼1
⋮

1
𝛼𝛼2
⋮

⋯
⋯
⋱

1
𝛼𝛼𝑛𝑛
⋮

𝛼𝛼1𝑡𝑡−1 𝛼𝛼2𝑡𝑡−1 ⋯ 𝛼𝛼𝑛𝑛𝑡𝑡−1
�, and 𝑍𝑍 =

⎝

⎜⎜
⎛

1
𝑔𝑔(𝛼𝛼1) 0 ⋯

0 1
𝑔𝑔(𝛼𝛼2) ⋱

⋮      ⋮     ⋱

0
⋮
0

0   ⋯    0 1
𝑔𝑔(𝛼𝛼𝑛𝑛)⎠

⎟⎟
⎞

, then matrix 𝐻𝐻 is a parity check matrix for a Goppa code Γ(𝐿𝐿,𝑔𝑔(𝑒𝑒)). 

Proof [According to Engelbert, Overbert, Schmidt [F]] 
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Since 𝑔𝑔(𝑒𝑒) is irreducible, there exists a primitive element 𝛼𝛼 for all 𝛼𝛼 ∈ 𝐺𝐺𝐹𝐹(2𝑚𝑚) such 

that 𝑔𝑔(𝛼𝛼) ≠ 0 . And so the subset 𝐿𝐿 can contain all elements of 𝐺𝐺𝐹𝐹(2𝑚𝑚). 

Notice that 𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝛼𝛼𝑖𝑖)
𝑥𝑥−𝛼𝛼𝑖𝑖

= ∑ 𝑔𝑔𝑗𝑗 ∙
𝑥𝑥𝑖𝑖−𝛼𝛼𝑖𝑖

𝑗𝑗

𝑥𝑥−𝛼𝛼𝑖𝑖
= ∑ 𝑒𝑒𝑤𝑤𝑡𝑡−1

𝑤𝑤=0
𝑡𝑡
𝑗𝑗=0 ∑ 𝑔𝑔𝑗𝑗𝑡𝑡

𝑗𝑗=𝑤𝑤+1 𝛼𝛼𝑖𝑖
𝑗𝑗−1−𝑤𝑤,𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑓𝑓𝑓𝑓 1 ≤ 𝑓𝑓 <

𝑎𝑎 + 1. An arbitrary vector 𝑐𝑐 ∈ Γ(𝐿𝐿,𝑔𝑔(𝑒𝑒)) if and only if  ∑ ( 1
𝑔𝑔(𝛼𝛼𝑖𝑖)

∑ 𝑔𝑔𝑗𝑗𝛼𝛼𝑖𝑖
𝑗𝑗−1−𝑤𝑤) ∙ 𝑐𝑐𝑖𝑖 =𝑡𝑡

𝑤𝑤+1
𝑛𝑛
𝑖𝑖=1

0, for all 𝑤𝑤 = 0, … , 𝑡𝑡 − 1 . 

And so the parity check matrix 𝐻𝐻 can be written as 𝐻𝐻 = 𝑋𝑋𝑋𝑋𝑍𝑍, where 𝑋𝑋 =

�
𝑔𝑔𝑡𝑡 0 0
𝑔𝑔𝑡𝑡−1 𝑔𝑔𝑡𝑡 0
⋮ ⋮ ⋮

⋯ 0
⋯ 0
⋱ ⋮

𝑔𝑔1 𝑔𝑔2 𝑔𝑔3 ⋯ 𝑔𝑔𝑡𝑡

� ,𝑋𝑋 =  �

1
𝛼𝛼1
⋮

1
𝛼𝛼2
⋮

⋯
⋯
⋱

1
𝛼𝛼𝑛𝑛
⋮

𝛼𝛼1𝑡𝑡−1 𝛼𝛼2𝑡𝑡−1 ⋯ 𝛼𝛼𝑛𝑛𝑡𝑡−1
�, and 𝑍𝑍 =

⎝

⎜⎜
⎛

1
𝑔𝑔(𝛼𝛼1) 0 ⋯

0 1
𝑔𝑔(𝛼𝛼2) ⋱

⋮      ⋮     ⋱

0
⋮
0

0   ⋯    0 1
𝑔𝑔(𝛼𝛼𝑛𝑛)⎠

⎟⎟
⎞

. 

Therefore, we have that any codeword 𝑐𝑐 ∈ Γ(𝐿𝐿,𝑔𝑔(𝑧𝑧)) if and only if 𝐻𝐻𝑐𝑐𝑇𝑇 = 0. 

Q.E.D. 

 

2.5 Encoding 

The encoding of a Goppa code involves multiplying the message by the generator 

matrix of the Goppa code. 

Definition 2.5.1 The generator matrix of a Goppa Code is defined to be the 𝑘𝑘 × 𝑎𝑎 matrix 

𝐺𝐺 such that the rows of 𝐺𝐺 for the basis of the Goppa code Γ�𝐿𝐿,𝑔𝑔(𝑒𝑒)�.  

Proposition 2.5.1 Any 𝑎𝑎 ×  𝑘𝑘 matrix G with rank 𝑘𝑘, such that 𝐺𝐺𝐻𝐻𝑇𝑇 = 0, is a generator 

matrix. 
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 Proof 

 This proposition follows immediately from Proposition 2.4.1. 

Q.E.D. 

In order to send a message using Goppa codes, the message is first written in blocks 

of 𝑘𝑘 symbols. Then, each block is multiplied by the generator matrix 𝐺𝐺. The resulting 

vectors are a set of codewords.  An example of one block being encoded follows: 

(𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑘𝑘) ∗ 𝐺𝐺 = (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛). 

 

2.6 Irreducible Binary Goppa Code Example. 

Note that 𝐺𝐺𝐹𝐹(24) ≅ 𝐺𝐺𝐹𝐹(2)[𝑋𝑋]/(𝑘𝑘(𝑋𝑋)) for every irreducible polynomial 𝑘𝑘(𝑋𝑋) of 

degree 4. First, we find a primitive element 𝛼𝛼. We can factor 𝑋𝑋15 − 1 (𝑚𝑚𝑓𝑓𝑓𝑓 2) into 

irreducible factors. 

𝑋𝑋15 − 1(𝑚𝑚𝑓𝑓𝑓𝑓 2) = (𝑋𝑋 + 1)(𝑋𝑋2 + 𝑋𝑋 + 1)(𝑋𝑋4 + 𝑋𝑋 + 1)(𝑋𝑋4 + 𝑋𝑋3 + 1)(𝑋𝑋4 + 𝑋𝑋3 + 𝑋𝑋2 + 𝑋𝑋 + 1)  

We will leave the actual calculations for the above equation to the reader. 

If we let 𝑘𝑘(𝑋𝑋) = 𝑋𝑋4 + 𝑋𝑋 + 1, then 𝛼𝛼, a root of 𝑘𝑘(𝑋𝑋), is a primitive element if and only 

if the order of 𝛼𝛼 is 15. Because 𝛼𝛼 ≠ 1 and the order of an element must divide the order of 

the group, we only need to check when 𝛼𝛼3 ≠ 1 and 𝛼𝛼5 ≠ 1. By using 𝛼𝛼4 = 𝛼𝛼 + 1, we 

compute 𝛼𝛼3 = 𝛼𝛼3 ≠ 1 and 𝛼𝛼5 = 𝛼𝛼 ∙ 𝛼𝛼4 = 𝛼𝛼(1 + 𝛼𝛼) = 𝛼𝛼2 + 𝛼𝛼 ≠ 1. 

Therefore, 𝐺𝐺𝐹𝐹(24)∗, the multiplicative group of nonzero elements of 𝐺𝐺𝐹𝐹(24), is 

actually a cyclic subgroup generated by 𝛼𝛼, that is, < 𝛼𝛼 >, and so  
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𝐺𝐺𝐹𝐹(24) = 𝐺𝐺𝐹𝐹(24) ∪ {0} = {0,1,𝛼𝛼,𝛼𝛼2,𝛼𝛼3, … ,𝛼𝛼14}. 

As a result, we can write the elements of 𝐺𝐺𝐹𝐹(24) as the powers of 𝛼𝛼, plus the 

element 0,much like how we write binary form. Again, we use the fact that 𝛼𝛼4 = 𝛼𝛼 + 1. 

0 = 0 ∙ 1 + 0 ∙ 𝛼𝛼 + 0 ∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 = (0,0,0,0)𝑇𝑇 

1 = 1 ∙ 1 + 0 ∙ 𝛼𝛼 + 0 ∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 = (1,0,0,0)𝑇𝑇 

𝛼𝛼 = 0 ∙ 1 + 1 ∙ 𝛼𝛼 + 0 ∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 = (0,1,0,0)𝑇𝑇 

𝛼𝛼2 = 0 ∙ 1 + 0 ∙ 𝛼𝛼 + 1 ∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 = (0,0,1,0)𝑇𝑇 

𝛼𝛼3 = 0 ∙ 1 + 0 ∙ 𝛼𝛼 + 0 ∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 = (0,0,0,1)𝑇𝑇 

𝛼𝛼4 = 1 ∙ 1 + 1 ∙ 𝛼𝛼 + 0 ∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 = (1,1,0,0)𝑇𝑇 

𝛼𝛼5 = 0 ∙ 1 + 1 ∙ 𝛼𝛼 + 1 ∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 = (0,1,1,0)𝑇𝑇 

𝛼𝛼6 = 0 ∙ 1 + 0 ∙ 𝛼𝛼 + 1 ∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 = (0,0,1,1)𝑇𝑇 

𝛼𝛼7 = 1 ∙ 1 + 1 ∙ 𝛼𝛼 + 0 ∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 = (1,1,0,1)𝑇𝑇 

𝛼𝛼8 = 1 ∙ 1 + 0 ∙ 𝛼𝛼 + 1 ∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 = (1,0,1,0)𝑇𝑇 

𝛼𝛼9 = 0 ∙ 1 + 1 ∙ 𝛼𝛼 + 0 ∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 = (0,1,0,1)𝑇𝑇 

𝛼𝛼10 = 1 ∙ 1 + 1 ∙ 𝛼𝛼 + 1 ∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 = (1,1,1,0)𝑇𝑇 

𝛼𝛼11 = 0 ∙ 1 + 1 ∙ 𝛼𝛼 + 1 ∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 = (0,1,1,1)𝑇𝑇 

𝛼𝛼12 = 1 ∙ 1 + 1 ∙ 𝛼𝛼 + 1 ∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 = (1,1,1,1)𝑇𝑇 

𝛼𝛼13 = 1 ∙ 1 + 0 ∙ 𝛼𝛼 + 1 ∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 = (1,0,1,1)𝑇𝑇 
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𝛼𝛼14 = 1 ∙ 1 + 0 ∙ 𝛼𝛼 + 0 ∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 = (1,0,0,1)𝑇𝑇 

Consider the following Goppa code over subset 𝐿𝐿 = {𝛼𝛼𝑖𝑖 𝑒𝑒𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 2 ≤ 𝑓𝑓 ≤ 13} with 

𝑔𝑔(𝑒𝑒) = 𝑒𝑒2 + 𝑒𝑒 + 𝛼𝛼3. 

Note that this code is irreducible over 𝐺𝐺𝐹𝐹(24). Therefore, this code has the 

parameters 𝑝𝑝 = 2,𝑚𝑚 = 4,𝑎𝑎 = 12, and 𝑡𝑡 = 2. We know from Theorem 2.2.1 that 𝑘𝑘 ≥ 𝑎𝑎 −

𝑚𝑚𝑡𝑡 = 12 − 4 ∙ 2 = 4. And from Theorem 2.3.1, we know 𝑓𝑓 ≥ 2𝑡𝑡 + 1 = 2 ∙ 2 + 1 = 5. And so 

we have a [12,≥ 4,≥ 5] Goppa code. 

 To find the parity check matrix H, we can use Proposition 2.4.1 by assigning 𝑔𝑔1 =

𝛼𝛼7,𝑔𝑔2 = 1,𝑎𝑎𝑎𝑎𝑓𝑓 𝛼𝛼1 = 𝛼𝛼2,𝛼𝛼2 = 𝛼𝛼3, … ,𝛼𝛼12 = 𝛼𝛼13. We can then calculate the factors 1
𝑔𝑔(𝛼𝛼𝑖𝑖)

 for 

𝑓𝑓 = 1, … , 12. 

1
𝑔𝑔(𝛼𝛼1) =

1
(𝛼𝛼2)2 + 𝑒𝑒 + 𝛼𝛼3

=
1

𝛼𝛼4 + 𝛼𝛼2 + 𝛼𝛼3
= [(1,1,0,0)𝑇𝑇 + (0,0,1,0)𝑇𝑇 + (0,0,0,1)𝑇𝑇]−1

= [(1,1,1,1)𝑇𝑇]−1 = (𝛼𝛼12)−1 = 𝛼𝛼3 

1
𝑔𝑔(𝛼𝛼2) =

1
(𝛼𝛼3)2 + 𝑒𝑒 + 𝛼𝛼3

=
1

𝛼𝛼6 + 𝛼𝛼3 + 𝛼𝛼3
= [(0,0,1,1)𝑇𝑇 + (0,0,0,1)𝑇𝑇 + (0,0,0,1)𝑇𝑇]−1

= [(0,0,1,1)𝑇𝑇]−1 = (𝛼𝛼6)−1 = 𝛼𝛼9 

1
𝑔𝑔(𝛼𝛼3) =

1
(𝛼𝛼4)2 + 𝛼𝛼4 + 𝛼𝛼3

=
1

𝛼𝛼8 + 𝛼𝛼4 + 𝛼𝛼3
= [(1,0,1,0)𝑇𝑇 + (1,1,0,0)𝑇𝑇 + (0,0,0,1)𝑇𝑇]−1

= [(0,1,1,1)𝑇𝑇]−1 = (𝛼𝛼11)−1 = 𝛼𝛼4 

1
𝑔𝑔(𝛼𝛼4) =

1
(𝛼𝛼5)2 + 𝛼𝛼5 + 𝛼𝛼3

=
1

𝛼𝛼10 + 𝛼𝛼5 + 𝛼𝛼3
= [(1,1,1,0)𝑇𝑇 + (0,1,1,0)𝑇𝑇 + (0,0,0,1)𝑇𝑇]−1

= [(1,0,0,1)𝑇𝑇]−1 = (𝛼𝛼14)−1 = 𝛼𝛼 
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1
𝑔𝑔(𝛼𝛼5) =

1
(𝛼𝛼6)2 + 𝛼𝛼6 + 𝛼𝛼3

=
1

𝛼𝛼12 + 𝛼𝛼6 + 𝛼𝛼3
= [(1,1,1,1)𝑇𝑇 + (0,0,1,1)𝑇𝑇 + (0,0,0,1)𝑇𝑇]−1

= [(1,1,0,1)𝑇𝑇]−1 = (𝛼𝛼7)−1 = 𝛼𝛼8 

1
𝑔𝑔(𝛼𝛼6) =

1
(𝛼𝛼7)2 + 𝛼𝛼7 + 𝛼𝛼3

=
1

𝛼𝛼14 + 𝛼𝛼7 + 𝛼𝛼3
= [(1,0,0,1)𝑇𝑇 + (1,1,0,1)𝑇𝑇 + (0,0,0,1)𝑇𝑇]−1

= [(0,1,0,1)𝑇𝑇]−1 = (𝛼𝛼9)−1 = 𝛼𝛼6 

1
𝑔𝑔(𝛼𝛼7) =

1
(𝛼𝛼8)2 + 𝛼𝛼8 + 𝛼𝛼3

=
1

𝛼𝛼 + 𝛼𝛼8 + 𝛼𝛼3
= [(0,1,0,0)𝑇𝑇 + (1,0,1,0)𝑇𝑇 + (0,0,0,1)𝑇𝑇]−1

= [1,1,1,1]−1 = (𝛼𝛼12)−1 = 𝛼𝛼3 

1
𝑔𝑔(𝛼𝛼8) =

1
(𝛼𝛼9)2 + 𝛼𝛼9 + 𝛼𝛼3

=
1

𝛼𝛼3 + 𝛼𝛼9 + 𝛼𝛼3
= [(0,0,0,1)𝑇𝑇 + (0,1,0,1)𝑇𝑇 + (0,0,0,1)𝑇𝑇]−1

= [(0,1,0,1)𝑇𝑇]−1 = (𝛼𝛼9)−1 = 𝛼𝛼6 

1
𝑔𝑔(𝛼𝛼9) =

1
(𝛼𝛼10)2 + 𝛼𝛼10 + 𝛼𝛼3

=
1

𝛼𝛼5 + 𝛼𝛼10 + 𝛼𝛼3
= [(0,1,1,0)𝑇𝑇 + (1,1,1,0)𝑇𝑇 + (0,0,0,1)𝑇𝑇]−1

= [(1,0,0,1)𝑇𝑇]−1 = (𝛼𝛼14)−1 = 𝛼𝛼 

1
𝑔𝑔(𝛼𝛼10) =

1
(𝛼𝛼11)2 + 𝛼𝛼11 + 𝛼𝛼3

=
1

𝛼𝛼7 + 𝛼𝛼11 + 𝛼𝛼3
= [(1,1,0,1)𝑇𝑇 + (0,1,1,1)𝑇𝑇 + (0,0,0,1)𝑇𝑇]−1

= [(1,0,1,1)𝑇𝑇]−1 = (𝛼𝛼13)−1 = 𝛼𝛼2 

1
𝑔𝑔(𝛼𝛼11) =

1
(𝛼𝛼12)2 + 𝛼𝛼12 + 𝛼𝛼3

=
1

𝛼𝛼9 + 𝛼𝛼12 + 𝛼𝛼3
= [(0,1,0,1)𝑇𝑇 + (1,1,1,1)𝑇𝑇 + (0,0,0,1)𝑇𝑇]−1

= [(1,0,1,1)𝑇𝑇]−1 = (𝛼𝛼13)−1 = 𝛼𝛼2 

1
𝑔𝑔(𝛼𝛼12) =

1
(𝛼𝛼13)2 + 𝛼𝛼13 + 𝛼𝛼3

=
1

𝛼𝛼11 + 𝛼𝛼13 + 𝛼𝛼3
= [(0,1,1,1)𝑇𝑇 + (1,0,1,1)𝑇𝑇 + (0,0,0,1)𝑇𝑇]−1

= [(1,1,0,1)𝑇𝑇]−1 = (𝛼𝛼7)−1 = 𝛼𝛼8 
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We can then compute 𝑋𝑋𝑋𝑋𝑍𝑍 = 𝐻𝐻. 

𝐻𝐻 = � 𝑔𝑔2 ∙ 𝑔𝑔
(𝛼𝛼1)−1                              𝑔𝑔2 ∙ 𝑔𝑔(𝛼𝛼2)−1 ⋯ 𝑔𝑔2 ∙ 𝑔𝑔(𝛼𝛼12)−1

(𝑔𝑔1 + 𝑔𝑔2 ∙ 𝛼𝛼1) ∙ 𝑔𝑔(𝛼𝛼1)−1 (𝑔𝑔1 + 𝑔𝑔2𝛼𝛼2) ∙ 𝑔𝑔(𝛼𝛼2)−1 ⋯ (𝑔𝑔1 + 𝑔𝑔2𝛼𝛼12) ∙ 𝑔𝑔(𝛼𝛼12)−1�

= � 𝛼𝛼
3   𝛼𝛼9   𝛼𝛼4   𝛼𝛼   𝛼𝛼8   𝛼𝛼6   𝛼𝛼3   𝛼𝛼6   𝛼𝛼    𝛼𝛼2   𝛼𝛼2   𝛼𝛼8

1   𝛼𝛼13  𝛼𝛼7   𝛼𝛼14  𝛼𝛼3   0    𝛼𝛼14  𝛼𝛼6  𝛼𝛼7  𝛼𝛼10  𝛼𝛼4   𝛼𝛼13
� 

=

⎝

⎜
⎜
⎜
⎜
⎛

0 0 1
0 1 1
0 0 0

0 1 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0
0 1 1 0 1 0 1 1 1

1 1 0
1 1 1
0
0
0

0
1
1

1
0
1

0 0 1 1 1 0 0 0 0
1 0 0 1 0 1 1 1 1
0
0
1

0
0
1

0 0 0 1 1 1 0
0 0 1 0 1 0 1
0 1 1 1 0 0 1⎠

⎟
⎟
⎟
⎟
⎞

. 

Recall that 𝐺𝐺𝐻𝐻𝑇𝑇 = 0. Therefore, we can compute the rows of 𝐺𝐺 to be the vectors of 

the nullspace of 𝐻𝐻 𝑚𝑚𝑓𝑓𝑓𝑓 2. And so 𝐺𝐺 = �

0   1   1   0   1   0   1   0   0   1   0   0
0   1   1   1   1   0   0   1   1   0   0   0
1   1   0   1   1   0   0   0   0   0   0   1
1   1   1   0   1   1   0   1   0   0   1   0

�. Since the 

dimensions of this matrix is 4 × 12, we can conclude that the dimension of Γ(𝐿𝐿,𝑔𝑔(𝑒𝑒)) is 4. 

And so this Goppa code has the parameters [12, 4, ≥ 5]. 

 

 

2.7 Error Correction 

Let 𝑦𝑦 be the received codeword with 𝑟𝑟 ≤ 𝑡𝑡 errors. Then 

𝑦𝑦 = (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) = (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛) + (𝑒𝑒1, … , 𝑒𝑒𝑛𝑛), 

where there are 𝑟𝑟 places where 𝑒𝑒𝑖𝑖 ≠ 0. In order to correct the codeword back into the 

original codeword, we must first find the error vector. As such, we need to find the set of 
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error locations, 𝐸𝐸 = { 𝑓𝑓 𝑒𝑒𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑒𝑒𝑖𝑖 ≠ 0}, and the corresponding error values 𝑒𝑒𝑖𝑖 for all 𝑓𝑓 ∈

𝐸𝐸.  

Definition 2.7.1 The error locating polynomial 𝜎𝜎(𝑒𝑒) is defined as  

𝜎𝜎(𝑒𝑒) = �(𝑒𝑒 −
𝑖𝑖∈𝐸𝐸

𝛼𝛼𝑖𝑖). 

Since we are using binary Goppa codes, it is sufficient to simply locate the errors since 

there is only one other possible element. If we were to use regular Goppa codes, we would 

need to calculate a separate error correction polynomial as well. 

In order to error correct a codeword, we must apply Patterson’s algorithm [H]. His 

algorithm for correcting 𝑟𝑟 ≤ 𝑡𝑡 errors for 𝑔𝑔(𝑒𝑒) irreducible over 𝐺𝐺𝐹𝐹(2𝑚𝑚) is as follows: 

1. Let 𝑦𝑦 = (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) be a received codeword. Compute the syndrome 

𝑒𝑒(𝑒𝑒) = ∑ 𝑦𝑦𝑖𝑖
𝑥𝑥−𝛼𝛼𝑖𝑖

𝑛𝑛
𝑖𝑖=1  𝑚𝑚𝑓𝑓𝑓𝑓 𝑔𝑔(𝑒𝑒). 

2. Calculate 𝜎𝜎(𝑒𝑒) by following the next four steps: 

a. Find ℎ(𝑒𝑒) such that 𝑒𝑒(𝑒𝑒)ℎ(𝑒𝑒) ≡ 1 �𝑚𝑚𝑓𝑓𝑓𝑓 𝑔𝑔(𝑒𝑒)�. If ℎ(𝑒𝑒) = 𝑒𝑒, then we are 

finished and the solution is 𝜎𝜎(𝑒𝑒) = 𝑒𝑒. 

b. Calculate 𝑓𝑓(𝑒𝑒) such that 𝑓𝑓2(𝑒𝑒) ≡ ℎ(𝑒𝑒) + 𝑒𝑒 (𝑚𝑚𝑓𝑓𝑓𝑓 𝑔𝑔(𝑒𝑒)). 

c. Find 𝑎𝑎(𝑒𝑒) and 𝑏𝑏(𝑒𝑒), with 𝑏𝑏(𝑒𝑒) of least degree, such that 𝑓𝑓(𝑒𝑒)𝑏𝑏(𝑒𝑒) ≡

𝑎𝑎(𝑒𝑒)�𝑚𝑚𝑓𝑓𝑓𝑓 𝑔𝑔(𝑒𝑒)�. 

d. Set 𝜎𝜎(𝑒𝑒) = 𝑎𝑎2(𝑒𝑒) + 𝑏𝑏2(𝑒𝑒)𝑒𝑒. 

3. Use 𝜎𝜎(𝑒𝑒) to determine the set of error locations  𝐸𝐸 = { 𝑓𝑓 𝑒𝑒𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝜎𝜎(𝛼𝛼𝑖𝑖) = 0}. 

4. Define the error vector 𝑒𝑒 = (𝑒𝑒1, … , 𝑒𝑒𝑛𝑛) by 𝑒𝑒𝑖𝑖 = 1 for 𝑓𝑓 ∈ 𝐸𝐸 and 𝑒𝑒𝑖𝑖 = 0 elsewhere. 

5. Define the codeword 𝑐𝑐 = 𝑦𝑦 − 𝑒𝑒. 
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2.8 Decoding 

Once all possible errors in a codeword are corrected, the receiver can easily recover 

the original message. Recall that (𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑘𝑘) ∗ 𝐺𝐺 = (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛). Think of this function as 

a map from 𝐹𝐹𝑘𝑘 → 𝐹𝐹𝑛𝑛 such that 𝑚𝑚 → 𝑚𝑚𝐺𝐺. Since 𝑚𝑚𝑘𝑘 has rank k and G has rank k and 𝐹𝐹𝑛𝑛 has 

rank 𝑎𝑎, this map from 𝐹𝐹𝑘𝑘 → 𝐹𝐹𝑛𝑛 is injective.  Therefore, we can rearrange the equation 

(𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑘𝑘) ∗ 𝐺𝐺 = (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛) so that 𝐺𝐺𝑇𝑇 ∙ �

𝑚𝑚1
𝑚𝑚2
⋮
𝑚𝑚𝑘𝑘

� = �

𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑛𝑛

�. 

This is simply a system of 𝑎𝑎 equations with 𝑘𝑘 unknowns, which we can use row reduction 

to solve, 

�𝐺𝐺𝑇𝑇�
𝑐𝑐1
⋮
𝑐𝑐𝑛𝑛
�~⋯~

⎝

⎜⎜
⎛

1   0   ⋯    0   𝑚𝑚1
0   1   ⋯    0   𝑚𝑚2
⋮     ⋮     ⋱    ⋮      ⋮

0   0   ⋯    1   𝑚𝑚𝑘𝑘
− − − −−−−

𝑋𝑋 ⎠

⎟⎟
⎞

,  

such that 𝑋𝑋 is a (𝑎𝑎 − 𝑘𝑘)  ×  (𝑘𝑘 + 1) matrix. 

 

Part III: The McEliece Cryptosystem 

3.1 Overview 

The McEliece Cryptosystem is a type of Public Key cryptosystem that uses a linear, 

error-correcting code in order to create a public key and a private key. The original error-

correcting code used in this cryptosystem is the binary Goppa code. A public key, as one 

would assume, is public; anyone and everyone can find it. The public key is based on the 
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private key, but in such a way that makes it unfeasible to recover the private key. In order 

to do this, the private key is only held by the receiver of the message. Traditionally, we use 

the example of two friends, Alice and Bob, to explain cryptography.  

 Suppose Alice wants to send a private message to Bob. Bob must first publish his 

public key, which is based on his private key. Then, Alice takes Bob’s public key and 

encrypts her message with it. The message then becomes a codeword. She sends her 

encrypted message to Bob. Bob then uses his private key to decrypt the codeword and read 

the message. 

In order to construct the public and private keys, Bob must first choose an arbitrary 

Goppa polynomial 𝑔𝑔(𝑧𝑧) with a degree 𝑡𝑡 over 𝐺𝐺𝐹𝐹 (2𝑚𝑚). The Goppa code defined by this 

polynomial and by 𝐿𝐿 has parameters [𝑎𝑎,≥ 𝑎𝑎 −𝑚𝑚𝑡𝑡,≥ 2𝑡𝑡 + 1]. Using this, Bob would then 

compute the 𝑘𝑘 𝑒𝑒 𝑎𝑎 generator matrix 𝐺𝐺 of the Goppa code. Then, Bob randomly chooses a 

𝑘𝑘 𝑒𝑒 𝑘𝑘 invertible matrix 𝑆𝑆 and a 𝑎𝑎 𝑒𝑒 𝑎𝑎 permutation matrix 𝑃𝑃, which means that 𝑃𝑃 has exactly 

one 1 in every row and column, with all other entries being zero. Then he computes 𝐺𝐺′ =

𝑆𝑆𝐺𝐺𝑃𝑃. 𝐺𝐺′ is his encoding matrix. This results in his public key consisting of 𝐺𝐺′ and 𝑡𝑡 only.  

 The private key consists of the polynomial 𝑔𝑔(𝑧𝑧), the original matrix 𝐺𝐺, along with 

matrices 𝑆𝑆 and 𝑃𝑃 such that 𝐺𝐺′ = 𝑆𝑆𝐺𝐺𝑃𝑃. 

 Once Bob publishes his public key, Alice generates a random binary vector 𝑒𝑒 of 

length 𝑘𝑘 that has a weight 𝑤𝑤𝑡𝑡(𝑒𝑒) ≤ 𝑡𝑡. Then, Alice can encode her message 𝑚𝑚 =

(𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑘𝑘) by computing 𝑦𝑦 = 𝑚𝑚𝐺𝐺′ + 𝑒𝑒. Then, Alice sends her ciphertext 𝑦𝑦. 

Bob receives Alice’s codeword and uses his permutation matrix 𝑃𝑃 to compute  
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𝑦𝑦′ = 𝑦𝑦𝑃𝑃−1 = 𝑚𝑚𝐺𝐺′𝑃𝑃−1 + 𝑒𝑒𝑃𝑃−1 = 𝑚𝑚𝑆𝑆𝐺𝐺𝑃𝑃𝑃𝑃−1 + 𝑒𝑒′ = (𝑚𝑚𝑆𝑆)𝐺𝐺 + 𝑒𝑒′. 

Bob can then decode 𝑦𝑦′ into the message 𝑚𝑚′ = 𝑚𝑚𝑆𝑆 by finding 𝑒𝑒′, which is done by Bob 

applying Patterson’s algorithm. Once this is done, Bob can is calculate 𝑦𝑦 − 𝑒𝑒′=𝑚𝑚𝑆𝑆𝐺𝐺 and 

since Bob knows what 𝑆𝑆 is, he can calculate 𝑆𝑆−1, and then recover the original message 𝑚𝑚 =

𝑚𝑚′𝑆𝑆−1. 

 

3.2 Example 

We will use the same Goppa code from our previous examples. Recall our generator 

matrix  

𝐺𝐺 = �

0   1   1   0   1   0   1   0   0   1   0   0
0   1   1   1   1   0   0   1   1   0   0   0
1   1   0   1   1   0   0   0   0   0   0   1
1   1   1   0   1   1   0   1   0   0   1   0

�.  

Now we need to choose our random matrices 𝑆𝑆 and 𝑃𝑃 and modify matrix 𝐺𝐺. 𝐺𝐺 is 

a 4 × 12 matrix, and so 𝑆𝑆 must be a 4 × 4 matrix and 𝑃𝑃 must be a 12 × 12 matrix. I have 

chosen our random matrices as the following: 

𝑆𝑆 = �

1   0   0   1
0   1   0   1
0   1   0   0
0   0   1   1

�, 
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𝑃𝑃 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1   0   0   0   0   0   0   0   0   0   0   0
0   0   1   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   1   0   0   0
0   0   0   0   0   1   0   0   0   0   0   0
0   0   0   0   1   0   0   0   0   0   0   0
0   1   0   0   0   0   0   0   0   0   0   0
0   0   0   1   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0   0   1
0   0   0   0   0   0   0   1   0   0   0   0
0   0   0   0   0   0   0   0   0   1   0   0
0   0   0   0   0   0   0   0   0   0   1   0
0   0   0   0   0   0   1   0   0   0   0   0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

Using these matrices, we compute the public encryption matrix 𝐺𝐺′ such that 

𝐺𝐺′ = 𝑆𝑆𝐺𝐺𝑃𝑃 = �

1   1   0   1   0   0   0   0   0   1   1   1
1   1   0   0   0   1   0   1   0   0   1   0
0   0   1   0   1   1   0   1   1   0   0   1
0   1   0   0   0   1   1   0   1   0   1   1

�. 

Bob then publishes this matrix 𝐺𝐺′ along with 𝑡𝑡 = 2. Notice that anyone can encrypt a 

message with this information. But let us suppose Alice wants to send a message 𝑚𝑚 =

(1,0,1,0). 

First, we compute the matrix  

𝑚𝑚𝐺𝐺′ = (1,1,1,1,1,1,0,1,1,1,1,0), 

and then we add a random error vector 𝑒𝑒 = (1,1,0,0,0,0,0,0,0,0,0,0) so that,  

𝑦𝑦 = 𝑚𝑚𝐺𝐺′ + 𝑒𝑒 = (0,0,1,1,1,1,0,1,1,1,1,0). 

This results in the ciphertext that Alice then sends to Bob. Bob then wants to retrieve the 

original message 𝑚𝑚 from the ciphertext 𝑦𝑦. In order to do so, he first computes 𝑦𝑦𝑃𝑃−1 by 

using his secret permutation matrix 𝑃𝑃. 

𝑦𝑦𝑃𝑃−1 = 𝑚𝑚𝐺𝐺′𝑃𝑃−1 + 𝑒𝑒𝑃𝑃−1 
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           = 𝑚𝑚(𝑆𝑆𝐺𝐺𝑃𝑃)𝑃𝑃−1 + 𝑒𝑒′ 

= (𝑚𝑚𝑆𝑆)𝐺𝐺 + 𝑒𝑒′ 

= (0,0,1,1,1,1,0,1,1,1,1,0) ∙

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  1  0  0  0  0  0  0
0  1  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  1  0  0  0  0  0
0  0  0  0  1  0  0  0  0  0  0  0
0  0  0  1  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  1
0  0  0  0  0  0  0  0  1  0  0  0
0  0  1  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  1  0  0
0  0  0  0  0  0  0  0  0  0  1  0
0  0  0  0  0  0  0  1  0  0  0  0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

= (0,1,1,1,1,0,1,0,1,1,1,0). 

With this permutation, the errors have been moved to the first and sixth columns. Bob 

corrects these by using the error-correcting algorithm and finds 

𝑚𝑚𝑆𝑆𝐺𝐺 = (1,1,1,1,1,1,1,0,1,1,1,0). 

We know from section 2.8 that 𝑚𝑚𝑆𝑆 can be found by row reducing [𝐺𝐺𝑇𝑇|(𝑚𝑚𝑆𝑆𝐺𝐺)𝑇𝑇]. Thus we  

find 𝑚𝑚𝑆𝑆 = (1,1,0,1). Finally, we compute 𝑚𝑚 = (1,1,0,1) ∙ �

1   1   1   0
0   0   1   0
0   1   1   1
0   1   1   0

� = (1,0,1,0).  

 

3.3 Attacking 

In cryptology, there are various types of attacks. A brute force attack is when the 

enemy tries every possible key and determines which key results in a meaningful message. 
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For this attack, the longer the length of a key, the longer it will take to try every possible 

key. A direct, or per-message, attack is an attack that tries to decode a given message, but 

does not necessarily solve the entire cryptosystem. A structural attack occurs when Eve 

would try to recover the structure, or at least part of the structure, of the original message 

from the public key. 

The most effective attack against the McEliece cryptosystem is an attack called 

“information-set decoding.” Many cryptologists have published variants of this attack from 

McEliece in his original paper [K] to Stern [M] in his subsequent paper. Most of the variants 

of the information-set decoding are based off of Stern’s attack. 

Stern’s attack refers to Stern’s method on finding codewords with a low Hamming 

weight. In order to do so, we must select an integer 𝑤𝑤 ≥ 0 and a (𝑎𝑎 − 𝑘𝑘)  ×  𝑎𝑎 parity check 

matrix 𝐾𝐾 for an [𝑎𝑎,𝑘𝑘] code over the binary field. Our goal is to find a solution to the 

equation 𝐾𝐾𝑧𝑧 = 0 with the weight |𝑧𝑧| = 𝑤𝑤. Then we complete the following steps: 

1. Randomly select a 𝑎𝑎 × 𝑘𝑘 column from 𝐾𝐾. Select 𝑎𝑎 − 𝑘𝑘 − 1 additional columns 

out of the remaining columns of 𝐾𝐾 such that each column is chosen due to 

pivots in previous columns by using Gaussian elimination.  

2. Randomly select a subset 𝑍𝑍 from the 𝑎𝑎 − 𝑘𝑘 columns consisting of 𝑓𝑓 elements. 

3. Partition the leftover columns into two subsets 𝑋𝑋 and 𝑋𝑋. Each column is 

added to either 𝑋𝑋 or 𝑋𝑋 with the probability of  1
2
 . 
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4. Search for codewords with exactly 𝑝𝑝 nonzero bits in 𝑋𝑋, exactly 𝑝𝑝 nonzero bits 

in 𝑋𝑋, no nonzero bits in 𝑍𝑍, and exactly 𝑤𝑤 − 2𝑝𝑝 nonzero bits in the remaining 

columns by completing the following steps.  

a. Apply elementary row operations to the matrix 𝐾𝐾 so that the 

randomly selected 𝑎𝑎 − 𝑘𝑘 columns become the identity matrix. 

b. For every subset 𝐴𝐴 of 𝑋𝑋 with 𝑝𝑝 elements, add the columns of the 

matrix 𝑚𝑚𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓 2 for each row 𝑓𝑓 in order to compute the 𝑓𝑓-bit vector 

𝜋𝜋(𝐴𝐴). Do the same for every subset 𝐵𝐵 of 𝑋𝑋 with 𝑝𝑝 elements. 

c. Find all pairs 𝐴𝐴, 𝐵𝐵 such that 𝜋𝜋(𝐴𝐴) = 𝜋𝜋(𝐵𝐵). For every such pair, 

compute the sum of all members of 𝐴𝐴 ∪ 𝐵𝐵. Said sum is a (𝑎𝑎 − 𝑘𝑘)-bit 

vector. If the vector does not have a weight of 𝑤𝑤 − 2𝑝𝑝, then the attack 

has failed. If the vector does have a weight of 𝑤𝑤 − 2𝑝𝑝, then the 

solution can be found by adding the corresponding columns and those 

columns, together with 𝐴𝐴 and 𝐵𝐵, form a codeword with weight 𝑤𝑤. If 

there are no such codewords, the attack fails and Stern starts over 

with s new selection of columns. 

Say we have a code 𝐶𝐶 over the binary field. Let 𝑦𝑦 have a distance 𝑤𝑤 from a codeword 𝑐𝑐 ∈

𝐶𝐶, then 𝑦𝑦 − 𝑐𝑐 is a element with a weight w of the code 𝐶𝐶 + {0,𝑦𝑦}. Eve knows the McEliece 

public key 𝐺𝐺′, 𝑡𝑡. thus, Eve can add y to the list of generators in order to form a generator 

matrix 𝐶𝐶 + {0,𝑦𝑦}. Note that the only codeword with weight 𝑡𝑡 is 𝑦𝑦 − 𝑐𝑐, which is precisely the 

codeword we found with Stern’s attack. Therefore, Eve can use this codeword to find 𝑐𝑐 and 

solve for the original message. 
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 In the paper by Bernstein, Lange, and Peters [C], they present an improved attack 

based on Stern’s method. They prove that their attack is more effective than any previous 

attack. They demonstrated their attack on a  [1024, 524] Goppa code and prove that they 

can successfully break the code in about 1400 days with the use of a 2.4 GHz Intel Core 2 

Quad Q6600 CPU. By using 200 of these computers, their attack takes approximately one 

week. They note that the previously most effective attack by Canteaut, Chabaud, [D] and 

Sendrier [E] would need 7400000 days on one 433MHz DEC Alpha CPU and would need 

220000 days if the improvements in hardware were taken into account.    

3.4 Security 

As stated at the beginning of the paper, we assume that Eve knows what 

cryptosystem is being used. This assumption is used to assess the security of a 

cryptosystem and is referred to as Kerckhoffs’s Principle: When determining how secure a 

cryptosystem is, one should always assume the enemy knows the method that is being used 

[N, page 4]. 

The security of this cryptosystem depends on how difficult it is to decode 𝑦𝑦′ in order 

to obtain 𝑚𝑚′. Eve will have a hard time trying to separate 𝐺𝐺 from 𝐺𝐺′ because in order to do 

so, she would need to know the inverse of matrix 𝑆𝑆, which was not published. Also, Eve 

does not know what 𝑃𝑃 is either, which means Eve cannot find 𝑦𝑦′ in order to find 𝑚𝑚′. 

Multiplying 𝑆𝑆𝐺𝐺 together scrambles the message into another matrix. Then when we 

multiply the result by the permutation matrix 𝑃𝑃, we further scramble the matrix by 

randomizing the order of the columns. This is done in order to make the resulting matrix 

look random and ensure the difficulty of obtaining the decoding method from the encoding 
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matrix. Because of this scrambling of the matrices, Eve cannot decipher the private key 

from the public key.  

In order to make this system as secure as possible, the chosen code needs to be very 

large in order to successfully hide the Goppa code within the scrambled generator matrix 

𝐺𝐺′. This is a major drawback because using a code with such a large key size makes it very 

difficult to use this system practically. But as technology continues to advance and the 

potential key size increases, this cryptosystem will become more and more useful. 

 In his original paper on the McEliece cryptosystem [K], McEliece suggested the use 

of a [1024, 524] Goppa code. Such a code can correct for up to 50 errors. Ever since this 

introduction, there have been a variety of modifications made to the cryptosystem, most of 

them using different codes. However, most of these modifications have proved lacking and 

less secure than the original proposal.  

 Repeatedly sending the same message will also make the cryptosystem more 

susceptible to attack. This is because sending the same message twice will generate two 

different ciphertext and since the location of the errors are unlikely to be the same, Eve 

could then compare and potentially uncover the original message.  

 

 

 
References 
 
[A] Artin, Michael. Algebra. Englewood Cliffs, NJ: Prentice Hall, 1991. Print.  
 

 38 



[B] Berlekamp, E. "Goppa Codes." IEEE Transactions on Information Theory 19.5 
(1973): 590-92. Web. 
 

[C] Bernstein, Daniel J., Tanja Lange, and Christiane Peters. "Attacking and Defending 
the McEliece Cryptosystem." Post-quantum Cryptography: Second International 
Workshop, PQCrypto 2008 Cincinnati, OH, USA, October 17-19, 2008 Proceedings. 
Ed. Johannes Buchmann and Jintai Ding. Berlin: Springer, 2008. 31-46. Print. 
 

[D]  Canteaut, Anne, and Chabaud, Florent. “A New Algorithm for Finding Minimum-
Weight Words In a Linear Code: Application to the McEliece Cryptosystem and to 
narrow-sense BCH codes of length 511. IEEE Transactions on Information Theory, 
44(1):367-378, 1998. Print. 

 
[E] Canteaut, Anne, and Sendrier Nicolas. “Cryptanalysis of the Original McEliece 

Cryptosystem.” Advances in Cryptology—ASIACRYPT ’98, volume 1514 of Lecture 
Notes in Computer Science, pages 187-199. Springer, Berlin, 1998. 

 
[F] Engelbert, Daniela, Raphael Overbeck, and Arthur Schmidt. "A summary of McEliece-

type cryptosystems and their security." Journal of Mathematical Cryptology 1, 151–
199. MR 2008h:94056. Print. 
 

[G] Goppa, V. D. Geometry and Codes. Dordrecht: Kluwer Academic, 1988. Print. 
 
[H] Jiang, Yuan. A Practical Guide to Error-Control Coding Using MATLAB. Boston: Artech 

House, 2010. Print. 
 
[I] Jochemsz, Ellen. “Goppa Codes & the McEliece Cryptosystem.” Amsterdam: Vrije 

Universiteit Amsterdam, 2002. Print. 
 

[J] Lay, David C. Linear Algebra and Its Applications. Boston: Pearson/Addison-Wesley, 
2012. Print. 
 

[K] McEliece, R. J. "A Public-Key Cryptosystem Based on Algebraic Coding Theory." Jet 
Propulsion Laboratory DSM Progress Report 42-44. N.p., n.d. Web. 12 Jan. 2015. 
 

[L] Patterson, N. "The Algebraic Decoding of Goppa Codes." IEEE Transactions on 
Information Theory 21.2 (1975): 203-07. Web. 
 

[M] Stern, Jaques. “A Method For Finding Codewords of Small Weight.” Coding Theory 
and Applications, 388: 106-133, 1989. 
 

[N] Trappe, Wade, and Lawrence C. Washington. Introduction to Cryptography: With 
Coding Theory. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. Print. 

 

  

 39 



  

 

 40 


	Goppa Codes and Their Use in the McEliece Cryptosystems
	Recommended Citation

	title page

	Your Field: Mathematics
	Date: 
	Year: 15
	Degree: Science
	Student Name: Ashley Valentijn
	Capstone Title: Goppa Codes and Their Use In The McEliece Cryptosystem
	Capstone Project Reader: Professor Claudia Miller
	Capstone Project Advisor: Professor Steven Diaz


